Lineare Algebra Beispiele

Löse die Matrixgleichung [[1,-1,1],[2,3,0],[0,2,-1]]X=[[6,-1,9,11,12],[8,0,-7,0,1],[7,9,-11,6,1]]
[1-1123002-1]X=[6-19111280-70179-1161]111230021X=619111280701791161
Schritt 1
Find the inverse of [1-1123002-1]111230021.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Forme um.
|1-1123002-1|∣ ∣111230021∣ ∣
Schritt 1.2
Find the determinant.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Schritt 1.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Schritt 1.2.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|302-1|3021
Schritt 1.2.1.4
Multiply element a11a11 by its cofactor.
1|302-1|13021
Schritt 1.2.1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|-112-1|1121
Schritt 1.2.1.6
Multiply element a21a21 by its cofactor.
-2|-112-1|21121
Schritt 1.2.1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|-1130|1130
Schritt 1.2.1.8
Multiply element a31a31 by its cofactor.
0|-1130|01130
Schritt 1.2.1.9
Add the terms together.
1|302-1|-2|-112-1|+0|-1130|1302121121+01130
1|302-1|-2|-112-1|+0|-1130|1302121121+01130
Schritt 1.2.2
Mutltipliziere 00 mit |-1130|1130.
1|302-1|-2|-112-1|+01302121121+0
Schritt 1.2.3
Berechne |302-1|3021.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Die Determinante einer 2×22×2-Matrix kann mithilfe der Formel |abcd|=ad-cbabcd=adcb bestimmt werden.
1(3-1-20)-2|-112-1|+01(3120)21121+0
Schritt 1.2.3.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Mutltipliziere 33 mit -11.
1(-3-20)-2|-112-1|+01(320)21121+0
Schritt 1.2.3.2.1.2
Mutltipliziere -22 mit 00.
1(-3+0)-2|-112-1|+01(3+0)21121+0
1(-3+0)-2|-112-1|+01(3+0)21121+0
Schritt 1.2.3.2.2
Addiere -33 und 00.
1-3-2|-112-1|+01321121+0
1-3-2|-112-1|+0
1-3-2|-112-1|+0
Schritt 1.2.4
Berechne |-112-1|.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Die Determinante einer 2×2-Matrix kann mithilfe der Formel |abcd|=ad-cb bestimmt werden.
1-3-2(--1-21)+0
Schritt 1.2.4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.1
Mutltipliziere -1 mit -1.
1-3-2(1-21)+0
Schritt 1.2.4.2.1.2
Mutltipliziere -2 mit 1.
1-3-2(1-2)+0
1-3-2(1-2)+0
Schritt 1.2.4.2.2
Subtrahiere 2 von 1.
1-3-2-1+0
1-3-2-1+0
1-3-2-1+0
Schritt 1.2.5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1.1
Mutltipliziere -3 mit 1.
-3-2-1+0
Schritt 1.2.5.1.2
Mutltipliziere -2 mit -1.
-3+2+0
-3+2+0
Schritt 1.2.5.2
Addiere -3 und 2.
-1+0
Schritt 1.2.5.3
Addiere -1 und 0.
-1
-1
-1
Schritt 1.3
Since the determinant is non-zero, the inverse exists.
Schritt 1.4
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[1-1110023001002-1001]
Schritt 1.5
Ermittele die normierte Zeilenstufenform.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[1-111002-213-2-10-210-211-200-2002-1001]
Schritt 1.5.1.2
Vereinfache R2.
[1-1110005-2-21002-1001]
[1-1110005-2-21002-1001]
Schritt 1.5.2
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
[1-111000555-25-25150502-1001]
Schritt 1.5.2.2
Vereinfache R2.
[1-1110001-25-2515002-1001]
[1-1110001-25-2515002-1001]
Schritt 1.5.3
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.1
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
[1-1110001-25-251500-202-21-1-2(-25)0-2(-25)0-2(15)1-20]
Schritt 1.5.3.2
Vereinfache R3.
[1-1110001-25-2515000-1545-251]
[1-1110001-25-2515000-1545-251]
Schritt 1.5.4
Multiply each element of R3 by -5 to make the entry at 3,3 a 1.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.4.1
Multiply each element of R3 by -5 to make the entry at 3,3 a 1.
[1-1110001-25-25150-50-50-5(-15)-5(45)-5(-25)-51]
Schritt 1.5.4.2
Vereinfache R3.
[1-1110001-25-25150001-42-5]
[1-1110001-25-25150001-42-5]
Schritt 1.5.5
Perform the row operation R2=R2+25R3 to make the entry at 2,3 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.1
Perform the row operation R2=R2+25R3 to make the entry at 2,3 a 0.
[1-111000+2501+250-25+251-25+25-415+2520+25-5001-42-5]
Schritt 1.5.5.2
Vereinfache R2.
[1-11100010-21-2001-42-5]
[1-11100010-21-2001-42-5]
Schritt 1.5.6
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.6.1
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
[1-0-1-01-11+40-20+5010-21-2001-42-5]
Schritt 1.5.6.2
Vereinfache R1.
[1-105-25010-21-2001-42-5]
[1-105-25010-21-2001-42-5]
Schritt 1.5.7
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.7.1
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
[1+0-1+110+05-2-2+115-2010-21-2001-42-5]
Schritt 1.5.7.2
Vereinfache R1.
[1003-13010-21-2001-42-5]
[1003-13010-21-2001-42-5]
[1003-13010-21-2001-42-5]
Schritt 1.6
The right half of the reduced row echelon form is the inverse.
[3-13-21-2-42-5]
[3-13-21-2-42-5]
Schritt 2
Multiply both sides by the inverse of [1-1123002-1].
[3-13-21-2-42-5][1-1123002-1]X=[3-13-21-2-42-5][6-19111280-70179-1161]
Schritt 3
Vereinfache die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere [3-13-21-2-42-5][1-1123002-1].
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Schritt 3.1.2
Multipliziere jede Zeile in der ersten Matrix mit jeder Spalte in der zweiten Matrix.
[31-12+303-1-13+3231-0+3-1-21+12-20-2-1+13-22-21+10-2-1-41+22-50-4-1+23-52-41+20-5-1]X=[3-13-21-2-42-5][6-19111280-70179-1161]
Schritt 3.1.3
Vereinfache jedes Element der Matrix durch Ausmultiplizieren aller Ausdrücke.
[100010001]X=[3-13-21-2-42-5][6-19111280-70179-1161]
[100010001]X=[3-13-21-2-42-5][6-19111280-70179-1161]
Schritt 3.2
Multiplying the identity matrix by any matrix A is the matrix A itself.
X=[3-13-21-2-42-5][6-19111280-70179-1161]
Schritt 3.3
Multipliziere [3-13-21-2-42-5][6-19111280-70179-1161].
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×5.
Schritt 3.3.2
Multipliziere jede Zeile in der ersten Matrix mit jeder Spalte in der zweiten Matrix.
X=[36-18+373-1-0+3939--7+3-11311-0+36312-11+31-26+18-27-2-1+10-29-29+1-7-2-11-211+10-26-212+11-21-46+28-57-4-1+20-59-49+2-7-5-11-411+20-56-412+21-51]
Schritt 3.3.3
Vereinfache jedes Element der Matrix durch Ausmultiplizieren aller Ausdrücke.
X=[312415138-18-16-3-34-25-43-415-74-51]
X=[312415138-18-16-3-34-25-43-415-74-51]
X=[312415138-18-16-3-34-25-43-415-74-51]
 [x2  12  π  xdx ]